મુખ્ય વિષયવસ્તુ
પૂર્વ બીજગણિત
ક્રમયુક્ત જોડમાં સંબંધોનું અર્થઘટન કરવું
સલ આપેલ ક્ર્મયુક્ત જોડમાં પેટર્ન વચ્ચેના સંબંધોનું અર્થઘટન અને આલેખન કરે છે. સલ ખાન દ્વારા નિર્મિત.
વાર્તાલાપમાં જોડાવા માંગો છો?
No posts yet.
વિડિઓ ટ્રાન્સક્રિપ્ટ
નીચે ક્રમયુક્ત જોડ આપી છે જે આપેલી બે પેટર્ન ના પ્રથમ 6 પદ દર્શાવે છે દરેક જોડ ની પ્રથમ કિંમત પેટર્ન A નું પદ છે અને દરેક જોડ ની બીજી કિંમત પેટર્ન B નું પદ છે નીચે આપેલા જવાબ માં આ બે પેટર્ન ના જુદા જુદા વિધાનો આપ્યા છે બધા સાચા વિધાનો પસંદ કરો તેઓ અહીં શું તો અહીં શું આપેલું છે તે જોઈએ તેઓ કહે છે કે દરેક જોડ ની પ્રથમ કિંમત પેટર્ન A નું પદ છે આપણને અહીં આ જે યામ આપવા માં આવ્યા છે તે દરેક માની પ્રથમ કિંમત પેટર્ન A છે તેથી આપણે અહીં પેટર્ન A માં 1થી2 2થી4 4થી8 8થી16 અને 16થી32 પર જઈએ છીએ એવું લાગે છે કે અહી પેટર્ન A માં પ્રથમ પદ થી બીજા પદ પર જવા 2 વડે ગુણાકાર કરીએ છીએ તેવી જ રીતે બીજા પદ થી ત્રીજા પદ પર જવા ફરી 2 વડે ગુણાકાર કરીએ છીએ તો આપણે અહી આ કરવાનું ચાલુ રાખી શકીએ આપણે 2 વડે ગુણવાનું ચાલુ રાખી શકીએ 8*2 16 થાય અને 16*2 32 થાય હવે આપણે પેટર્ન B મા શું થાય છે તે જોઈએ અહીં આ જોડ ની બીજી સંખ્યા પેટર્ન B દર્શાવે છે આ યામ ની બીજી સંખ્યા પેટર્ન B દર્શાવે છે તમે જોઈ શકો કે બીજી સંખ્યા હંમેશા 3 જ રહે છે તેના વિશે વિચારવાની ઘણી બધી રીત છે તમે એવુ કહી શકો કે પેટર્ન B હંમેશા 3જ રહે છે અથવા તમે એવું કહી શકો કે પેટર્ન B ની શરૂઆત 3 થી થાય છે અને પછી આપણે તેમા દરેક વખતે 0 ઉમેરીએ છીએ કંઈક આ પ્રમાણે અથવા તમે એવું પણ કહી શકો કે પેટર્ન B ની શરૂઆત 3 થી થાય છે અને આપણે દરેક વખતે 1 વડે ગુણાકાર કરીએ છીએ આપણે અહીં દરેક વખતે 1 વડે ગુણાકાર કરીએ છીએ કારણકે બને રીતે અહીં તમને એક સમાન જવાબ મળે તે આપણે અહીં જોઈ શકીએ આમ આપણે બધી ક્રમયુક્ત જોડ જોઈ લીધી આપણે પેટર્ન A અને પેટર્ન B ને અનુરૂપ પદ પણ જોયા તો હવે આપણે વિકલ્પ જોઈએ અને લાગુ પડતા તમામ વિકલ્પ ને પસંદ કરીએ પેટર્ન A માં તમે અચળ સંખ્યા વડે ગુણાકાર કરી ને કોઈ પણ પદ પરથી પછી નું પદ મેળવી શકો તે અહીં સાચું લાગે છે આપણે પ્રથમ પદ પર થી બીજા પદ પર જવા 2 વડે ગુણાકાર કરીએ છીએ ત્યાર બાદ ફરી થી 2 વડે ગુણાકાર કરી ને આપણે ત્રીજું પદ મેળવીયે છીએ આ રીતે 2 વડે ગુણાકાર કરવાનો ચાલુ રાખી શકાય તો અહીં પછી નું પદ મેળવવા આપણે જે અચળ સંખ્યા વડે ગુણાકાર કરીએ છીએ તે અચળ સંખ્યા 2 છે માટે અહીં આ વિકલ્પ સાચો છે હવે બીજા વિકલ્પ માં કહ્યું છે કે પછી નું પદ 52,3 હોવું જોઈએ આપણે અહીં તેના વિશે વિચારીએ પેટર્ન A પ્રમાણે અહીં આ પ્રથમ સંખ્યા ને 2 વડે ગુણીયે તેનો ગુણાકાર 2 વડે કરીએ તો 32*2 64 થશે અને તેજ પ્રમાણે જો અહીં પેટર્ન B માટે અગાવું ના પદ ને 1 વડે ગુણીયે તો આપણને 3 મળે આમ હવે પછી ની જોડ 64,3 હોવી જોઈએ પરંતુ તેઓ આપણને કહે છે કે ત્યાર પછી નું પદ 52,3 હોવું જોઈએ માટે આ વિકલ્પ ખોટો છે હવે જો આપણે આ જોડ નો આલેખ દોરીએ તો બિંદુઓ સમાન રેખા પર હશે આપણે તેના વિશે વિચારીએ અહીં આ શિરોલંભ અક્ષ છે અને અહીં આ સમક્ષિતિજ અક્ષ છે હું અહીં શિરોલંબ અક્ષ પર પેટર્ન B રાખીશ અને સમક્ષિતિજ અક્ષ પર પેટર્ન A રાખીશ પેટર્ન A 32 સુધી જાય છે માટે ધારો કે અહીં આ 32 છે હવે જો તેનું અડધું લઈએ તો આપણને 16 મળે જો તેનું અડધું લઈએ તો આપણને 8 મળે જો તેનું અડધું લઈએ તો 4 મળે તેનું અડધું લઈએ તો 2 મળે અને તેનું અડધું લઈએ તો 1 મળે આમ અહીં આપણે પેટર્ન A ની દરેક સંખ્યા દર્શાવી પરંતુ આમા ની કોઈ પણ સંખ્યા માટે પેટર્ન B નું અનુરૂપ પદ 3 જ છે હવે જયારે પેટર્ન B 1 હોય ત્યારે પેટર્ન B 3 છે પેટર્ન A 2 હોય ત્યારે પણ પેટર્ન B 3 છે પેટર્ન A 4 હોય ત્યારે પેટર્ન B 3 છે પેટર્ન A 8 હોય ત્યારે પણ પેટર્ન B 3 છે પેટર્ન A 16 હોય ત્યારે પેટર્ન B 3 છે અને જયારે પેટર્ન A 32 હોય ત્યારે પેટર્ન B 3 છે તમે અહીં જોઈ શકો કે આ બધા જ બિંદુઓ એક જ રેખા પર છે જો અહીં હું આ બિંદુઓ ને જોડતી રેખા દોરું તો મને એક સમક્ષિતિજ રેખા મળશે માટે આ તમામ બિંદુઓ તે સમાન રેખા પર આવેલા છે માટે અહીં આ સાચું છે જો આપણે જોડ નો આલેખ દોરીએ તો તે બધા જ બિંદુઓ સમાન રેખા પર હશે હવે પેટર્ન B માં તમે અચળ સંખ્યા વડે ગુણાકાર કરી ને કોઈ પણ પદ પરથી પછી નું પદ મેળવી શકો તે અહીં સાચું છે પેટર્ન B હંમેશા 3 જ રહે છે પરંતુ તમે આ 3 નો એક સાથે ગુણાકાર કરી ને 3 મેળવી શકો અહીં 1 એ અચળ સંખ્યા છે આપણે દરેક વખતે નવું પદ મેળવવા 1 વડે ગુણાકાર કરી શકીએ તેથી આ વિકલ્પ પણ સાચો છે આમ અહીં આ વિકલ્પ સિવાય તમામ વિકલ્પ સાચા છે પછી નું પદ 52,3 નહિ પરંતુ 64,3 હોવું જોઈએ